B565 Final Project

Predicting Income from Census Data

Karthik Vegi

Melita Dsouza

kvegi@iu.edu

dsouzam@iu.edu

1. Goal of the Project

The goal of the project is to create a classification model to identify the individuals with a potential of earning more than \$50,000 USD. The response variable is a binary classifier that will identify whether a person will make \$50k and the predictor variables are census information like age, marital status, education etc. We would like to identify the significance of the variables that were used as predictors. A couple of classification techniques were used to compare the accuracy of the classification. The focus of this project will be more on the interpretation and less on implementing a classification algorithm from scratch.

2. Statistics of the dataset used

The dataset used is from UCI Machine Learning Repository: https://archive.ics.uci.edu/ml/datasets/Adult

No of Observations: 48842

No of variables: 14

Attribute type: categorical/numeric

Predictor variables: age, workclass, fnlwgt, education, education-num, marital-status, occupation,

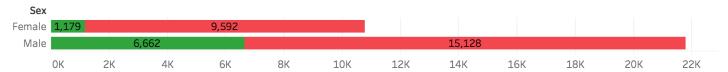
relationship, race, sex, capital-gain, capital-loss, weekly-hours, native-country, income

Response variable: Income

3. Tools Used

Analysis: R

Visualization: Tableau, R

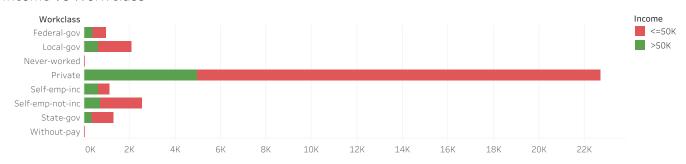

4. Feature Selection

We will exclude the irrelevant variables that will not go into the construction of our classification model. The variables **fnlwgt** and **education-num** are assumed to be of no or less significance and are removed from the training and test datasets. Attributes like **education**, **workclass** and **relationship** are strong features that will affect the response variable.

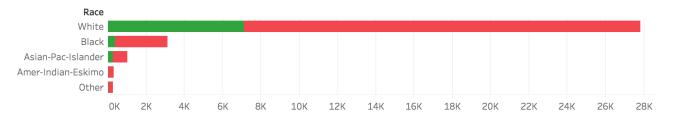
5. Data Visualization

We visualized the data in tableau to understand the significance of some important attributes

Males are more likely to earn more than 50k than females



Divorced, Seperated and Widowed are more likely to earn less than 50k


Marital-Status

Married-civ-						Married-	Married-AF-
Income	spouse	Never-married	Divorced	Separated	Widowed	spouse-absent	spouse
<=50K	8,284	10,192	3,980	959	908	384	13
>50K	6,692	491	463	66	85	34	10

Income Vs Work class

White Population tend to earn more than 50k

6. Choice of classification technique

- We chose to implement two classification algorithms so that we can compare the performance
- Naïve bayes is simple and works well even with a small training set
- Decision Tree is fast and scalable to compute, especially in this case where there are a lot of records

(i) Naïve Bayes classifier: Below are the test results for naïve bayes classifier

Naive Bayes: Confusion matrix for training set.. train.pred <=50K >50K <=50K 23273 4445

>50K 1447 3396

Naive Bayes: Accuracy of classifier on the training set is..[1] 81.90473

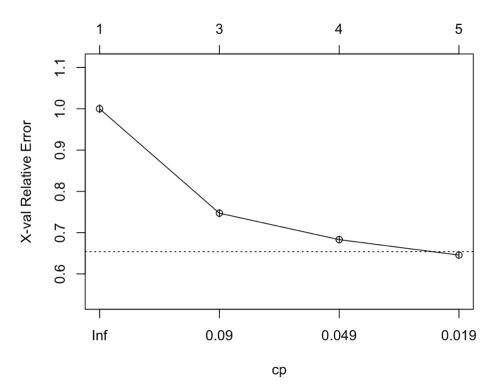
Naive Bayes: Confusion matrix for test set..

naive.pred <=50K >50K <=50K 11846 2522 >50K 589 1324

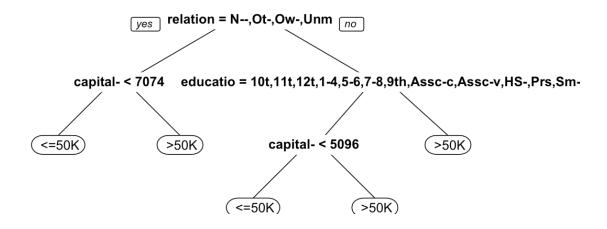
Naive Bayes: Accuracy of classifier on the test set is..[1] 80.89184

(ii) Decision Tree classifier:

Variables actually used in tree construction:
[1] capital-gain education relationship


Root node error: 7841/32561 = 0.24081

n= 32561


CP nsplit rel error xerror xstd 1 0.126387 0 1.00000 1.00000 0.0098399 2 0.064022 2 0.74723 0.74723 0.0088402 3 0.037495 3 0.68320 0.68320 0.0085321 4 0.010000 4 0.64571 0.64571 0.0083394

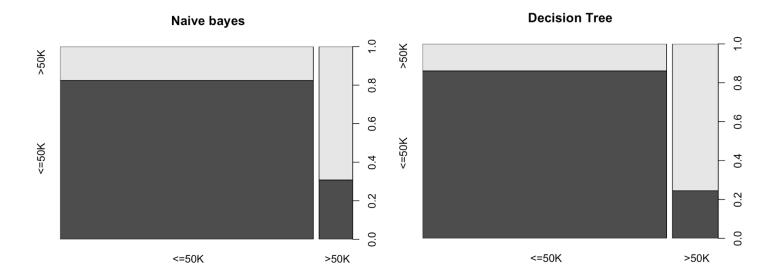
Error Rate Plot:

size of tree

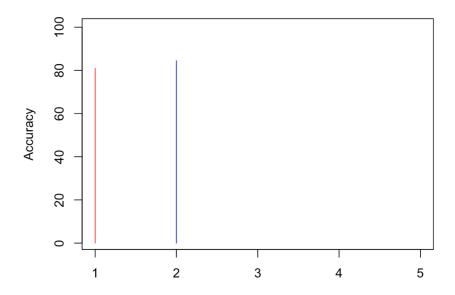
Decision Tree:

Decision Tree Statistics:

Decision Tree: Confusion matrix for training set.. train.pred <=50K >50K <=50K 23473 3816 >50K 1247 4025

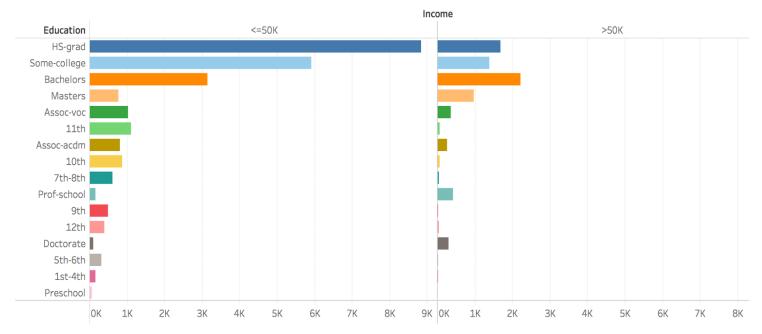

Decision Tree: Accuracy of classifier on the training set is..[1] 84.45072

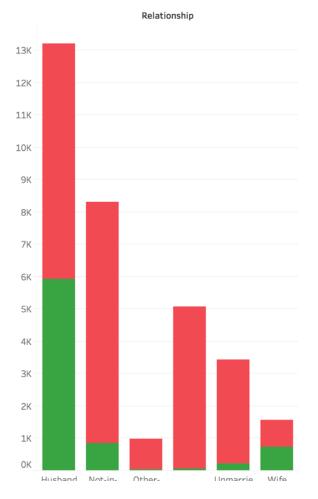
Decision Tree: Confusion matrix for test set.. tree.pred <=50K >50K <=50K 11805 1901 >50K 630 1945


Decision Tree: Accuracy of classifier on the test set is..[1] 84.45427

7. Evaluating Performance

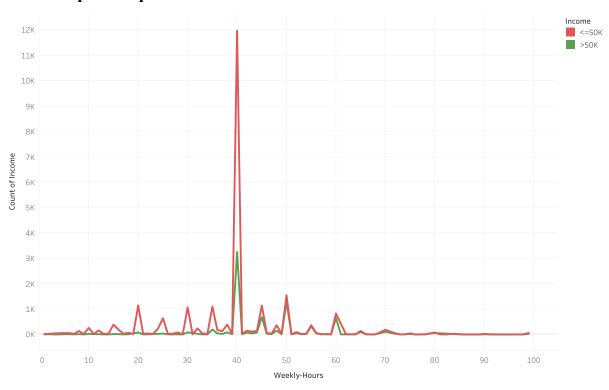
With the dataset, Decision tree performed better and the graphs are summarized below:


Comparision of Naive Bayes(Red) Vs Decision Tree(Blue


8. Key Insights

People with higher degrees tend to earn more than 50k

As the level of education increases, number of people earning > 50k increases


People in a stable relationship usually earned more than 50k

Working class has 6% of the records missing and the bulk of the population fall into private sector

workclass	type:integer	1.	?	1:	1836 (5.6%)	32561/32561
1	class:factor	۱2.	Federal-gov	۱ 2:	960 (2.9%)	(100.0%)
1	1	۱3.	Local-gov	۱ 3:	2093 (6.4%)	1
1	1	I 4.	Never-worked	4:	7 (0%)	1
1	1	۱5.	Private	۱ 5:	22696 (69.7%)	1
1	1	۱6.	Self-emp-inc	۱ 6:	1116 (3.4%)	1
1	1	۱7.	Self-emp-not-inc	۱ 7:	2541 (7.8%)	1
1	1	۱8.	State-gov	۱ 8:	1298 (4%)	1
1	1	۱9.	Without-pay	۱9:	14 (0%)	1

People who put in close to 40 hours earned more than 50k

9. Challenges and Opportunities

- With the given time, implementing a classification algorithm from scratch was not feasible
- With more time, a good work will be to compare all classification algorithms and plot the accuracy of them

10. References

- [1] https://www.tableau.com/learn/training
- [2] https://archive.ics.uci.edu/ml/datasets/Adult
- [3] https://www.r-bloggers.com/classification-trees-using-the-rpart-function/