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Abstract - This article represents the study of two 

different shortest path algorithms-Dijkstra’s 

algorithm and Bellman-Ford algorithm. The aim of 

this study is to compare the two algorithms based on 

their run time. The graph sizes and their average 

degree will be varied to decide which one of the two 

algorithms is optimal. We generate random graphs 

using Erdos-Renyi model. 

 

1. INTRODUCTION 

 
Shortest path problem is a way to find the 

shortest distance between vertices in a graph from 

the source node to the destination node. The most 

popularly used shortest path algorithms are 

Dijkstra’s and Bellman-Ford algorithm.  Both these 

algorithms have the same end result i.e. both give the 

shortest path from one node to all the other nodes. 

Erdos-Renyi model is used to generate random 

graphs. These graphs have nodes and edges; each 

edge has a probability p of existing. 

   Work distribution:  

Melita Dsouza-Bellman-Ford(code and analysis) 

Dwayne Dsouza-Dijkstra’s algorithm(code and 

analysis) 

   Erdos-Renyi-Collaboration 

 

 

 

1.1 Bellman-Ford algorithm 

 
The Bellman–Ford algorithm computes 

shortest paths from a single source vertex  to all of 

the other vertices in a weighted digraph[1]. This 

algorithm is compatible with negative edge weights. 

The fundamental idea behind Bellman-Ford is that 

there can be at most  |V| - 1 edges in one of our paths 

from the starting node to any other node in the graph, 

where |V| is the number of vertices in the graph. 

Therefore, if we iterate |V| - 1 times, we are  

guaranteed to find the shortest path from source to 

destination. Bellman-Ford updates along all edges 

for every iteration i.e. it examines each edge if it 

lessens the shortest path distance. 

Procedure [2] 

 
 
Bellman-Ford(G,l,s) 

 

Input:  Directed graph G=(V,E);  

edge lengths {le : e ∈ E} with no negative cycles; 

vertex s ∈ V 

 

Output: dist(u) = the distance from s to 

// ∀𝑢 reachable from s; where u∈V 

 

 

for all u ∈ 𝑉: 

dist(u)=∞ 

prev(u)=nil 

 

dist(s)=0 

 

 

repeat |V| - 1 times: 

 for all e ∈ E: 

  update(e) 

 

 

update((u , 𝑣) ∈ 𝐸) 

dist(𝑣) = min {dist(𝑣), dist(𝑢) + 𝑙} 

 

 

1.2 Dijkstra's algorithm 

 
Dijkstra's algorithm is an algorithm for 

finding shortest paths in a graph with edges that have 

non-negative edge weights. This algorithm follows a 

greedy approach which is why it fails with negative 

edge weights. Dijkstra’s algorithm works faster than 

Bellman-Ford algorithm. 
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Procedure 

 
Dijkstra(G,l,s) 

 

Input:  Directed/ undirected graph G=(V,E);  

positive edge lengths {le : e ∈ E}; 

vertex s ∈ V 

 

Output: dist(u) = the distance from s to 

// ∀𝑢 reachable from s; where u∈V 

 

for all u ∈ 𝑉: 

dist(u)=∞ 

prev(u)=nil 

 

dist(s)=0 

//Create a set for unvisited nodes: 

Z: set of unvisited nodes  

while Z != []: 

 remove minimum valued node from the 

set Z and assign it to u 

 for ∀  (u , 𝑣) ∈ 𝐸: 

  if dist(v)> dist(u)+l(u,v): 

     dist(v)> dist(u)+l(u,v) 

     prev(v)=u 

    decreasekey(Z,v) //making 

nodes far away move closer to the top of the queue 

 

INITIALIZE-SINGLE-SOURCE(G,s): 

 

1. for each vertex  𝑣 ∈  G.V 

2.   v.d=∞ 

3.   v.𝜋 = NIL 

4.   s.d =0 

 

RELAX(u,v,l): 

 

1. if v.d>u.d+l(u,v)for each vertex  𝑣 ∈  G.V 

2.   v.d=𝑢. 𝑑 + 𝑙(𝑢, 𝑣) 

3.   v.𝜋 = u 

 

3. TIME COMPLEXITY 

 

3.1 Bellman-Ford algorithm 

 

Line 1 of algorithm: The initial for loop runs through 

each vertex once. Hence this loop runs in O(V) time. 

 

Lines 2-4: This consists of 2 loops; one executing V 

times and the other E times. So, the time complexity 

will be O(VE). 

 

Lines 5-7: This loop runs through every edge, 

therefore running in O(E) time. 

 

Thus, the total time complexity is O(V.E) 

 

 

 

 

 
2. ALGORITHMS [3] 

 

2.1 Bellman-Ford algorithm 
 

BELLMAN-FORD(G,l,s) 

1. INITIALIZE-SINGLE-SOURCE(G,s) 

2. for i= 1 to |G. V| -1 

3.      for each edge (u,v) ∈ G.E 

4.         RELAX(u,v,l) 

5. for each edge(u,v) ∈ G.E 

6.      if v.d > u.d +l(u,v) 

7.         return FALSE 

8. return TRUE 

 

2.2 Dijkstra’s algorithm  

 

DIJKSTRA(G,l,s) 

1.INITIALIZE-SINGLE-SOURCE(G,s) 

2.  S = ∅ 

3.  Q = G.V 

4. while Q ≠ ∅ 

5. u=EXTRACT-MIN(Q) 

6.   S= S ∪ {𝑢} 

7.   for each vertex v ∈ 𝐺. 𝐴𝑑𝑗[𝑢] 
      8.    RELAX(u,v,l) 

 

 

 
 

3.2 Dijkstra’s algorithm 

 

 

 

Line 1 of algorithm: The initial for loop runs through 

each vertex once. Hence this loop runs in O(V) time. 

 

EXTRACT_MIN(Q) function runs in O(logV) time. 

 

Line 7: This loop runs through every vertex, thus it 

runs in O( E) time. 

 

The algorithm loops through the edges of each node. 

Thus, the total time complexity of this algorithm is  

O(E+VlogV). 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 



 

 

4. EXPERIMENTATION RESULTS 

Comparing the running time complexity of Bellman-Ford and 

Dijkstra’s algorithm by varying the number of nodes in the 

graph using Erdos-Renyi model. 

 

Number of 

nodes 

Time taken in seconds Probability 

Bellman Ford Dijkstra’s 

5 0.001235 0.02576 0.4 

10 0.001335 0.027194 0.4 

20 0.001617 0.028241 0.4 

40 0.002634 0.027268 0.4 

80 0.00493 0.029866 0.4 

100 0.005823 0.032361 0.4 

200 0.015194 0.039393 0.4 

400 0.049738 0.069224 0.4 

800 0.237473 0.441966 0.4 

1000 0.576739 0.635708 0.4 

1500 1.055265 0.50863 0.4 

2000 1.284116 0.963116 0.4 

3000 3.447053 1.957851 0.4 

5000 10.80324 6.743982 0.4 

7500 39.18482 14.133911 0.4 

 

 

 
 

From the above graph, we can see that Dijkstra’s algorithm 

works faster than Bellman-Ford approximately after 1300 

nodes. Bellman-Ford is comparatively slower than Dijkstra’s 

for higher number of nodes.  

 

 

 

 

EXAMPLE: 

 

The example below demonstrates the working of Dijkstra’s and 
Bellman-Ford algorithm. We use the graph generated by Erdos-
Renyi model as input. This graph is given in the form of an 
adjacency matrix as input to both the algorithms.   

 

Erdos-Renyi (graph): 

 

G=erdosRenyi(5,0.4,1) 

 

G = 

 

     0    10    10     0     0 

     2     2     4     0     6 

     6     9     8     8     9 

     0     0     8     7     8 

     0     3     6     6     0 

 

This graph is now given as input to the two algorithms. 

 

O/P of Bellman-Ford Algorithm: 

 

 Shortest path values are from Node 1 ( Origin)  

 Vertex(Destination) = [Total path value, Predecessor Node] 

 Vertex( 1 ) = [ 0 , 0 ]  

  Vertex( 2 ) = [ 1 , 10 ]  

  Vertex( 3 ) = [ 1 , 10 ]  

  Vertex( 4 ) = [ 3 , 18 ]  

  Vertex( 5 ) = [ 2 , 16 ]  

 Elapsed time is 0.001816 seconds. 

 

O/P of Dijkstra’s Algorithm: 

 

Enter  source: 1 

Enter destination: 5 

 

e = 

 

    16 

 

Elapsed time is 0.024561 seconds. 

 

5. TOOLS 

 

We used MATLAB Version 7.6.0.324 R2008a to code shortest 

path algorithms- Bellman-Ford and Dijkstra’s algorithm. We 

generated random graphs using Erdos-Renyi model which was 

coded in MATLAB as well. [4] 

The code was run on a Windows 10 64-bit system @2.4GHz. 
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6.CONCLUSION 

 
The analysis of the two shortest path algorithms shows 

that Bellman-Ford algorithm runs with a time complexity of 

O(V.E) whereas Dijkstra's algorithm runs the same  problem 

with a time complexity of O(E+VlogV). Thus, Dijkstra’s 

algorithm has a much lower running time as compared to 

Bellman-Ford; which is why we choose Dijkstra’s algorithm over 

Bellman-Ford for graphs with positive edges. Bellman-Ford 

algorithm should only be used with graphs having negative edge 

weights. 

Both the algorithms fail if there is a negative cycle 

involved in the graph.  
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