
An Analysis of Bellman-Ford and Dijkstra’s Algorithm

 Melita D’souza Dwayne Dexter D’souza

Department of Computer Science, Department of Computer Science,

Indiana University Bloomington, Indiana University Bloomington,

Bloomington, IN. Bloomington, IN.

dsouzam@indiana.edu dsouzad@indiana.edu

Abstract - This article represents the study of two

different shortest path algorithms-Dijkstra’s

algorithm and Bellman-Ford algorithm. The aim of

this study is to compare the two algorithms based on

their run time. The graph sizes and their average

degree will be varied to decide which one of the two

algorithms is optimal. We generate random graphs

using Erdos-Renyi model.

1. INTRODUCTION

Shortest path problem is a way to find the

shortest distance between vertices in a graph from

the source node to the destination node. The most

popularly used shortest path algorithms are

Dijkstra’s and Bellman-Ford algorithm. Both these

algorithms have the same end result i.e. both give the

shortest path from one node to all the other nodes.

Erdos-Renyi model is used to generate random

graphs. These graphs have nodes and edges; each

edge has a probability p of existing.

 Work distribution:

Melita Dsouza-Bellman-Ford(code and analysis)

Dwayne Dsouza-Dijkstra’s algorithm(code and

analysis)

 Erdos-Renyi-Collaboration

1.1 Bellman-Ford algorithm

The Bellman–Ford algorithm computes

shortest paths from a single source vertex to all of

the other vertices in a weighted digraph[1]. This

algorithm is compatible with negative edge weights.

The fundamental idea behind Bellman-Ford is that

there can be at most |V| - 1 edges in one of our paths

from the starting node to any other node in the graph,

where |V| is the number of vertices in the graph.

Therefore, if we iterate |V| - 1 times, we are

guaranteed to find the shortest path from source to

destination. Bellman-Ford updates along all edges

for every iteration i.e. it examines each edge if it

lessens the shortest path distance.

Procedure [2]

Bellman-Ford(G,l,s)

Input: Directed graph G=(V,E);

edge lengths {le : e ∈ E} with no negative cycles;

vertex s ∈ V

Output: dist(u) = the distance from s to

// ∀𝑢 reachable from s; where u∈V

for all u ∈ 𝑉:

dist(u)=∞

prev(u)=nil

dist(s)=0

repeat |V| - 1 times:

 for all e ∈ E:

 update(e)

update((u , 𝑣) ∈ 𝐸)

dist(𝑣) = min {dist(𝑣), dist(𝑢) + 𝑙}

1.2 Dijkstra's algorithm

Dijkstra's algorithm is an algorithm for

finding shortest paths in a graph with edges that have

non-negative edge weights. This algorithm follows a

greedy approach which is why it fails with negative

edge weights. Dijkstra’s algorithm works faster than

Bellman-Ford algorithm.

mailto:dsouzam@indiana.edu
mailto:dsouzad@indiana.edu

Procedure

Dijkstra(G,l,s)

Input: Directed/ undirected graph G=(V,E);

positive edge lengths {le : e ∈ E};

vertex s ∈ V

Output: dist(u) = the distance from s to

// ∀𝑢 reachable from s; where u∈V

for all u ∈ 𝑉:

dist(u)=∞

prev(u)=nil

dist(s)=0

//Create a set for unvisited nodes:

Z: set of unvisited nodes

while Z != []:

 remove minimum valued node from the

set Z and assign it to u

 for ∀ (u , 𝑣) ∈ 𝐸:

 if dist(v)> dist(u)+l(u,v):

 dist(v)> dist(u)+l(u,v)

 prev(v)=u

 decreasekey(Z,v) //making

nodes far away move closer to the top of the queue

INITIALIZE-SINGLE-SOURCE(G,s):

1. for each vertex 𝑣 ∈ G.V

2. v.d=∞

3. v.𝜋 = NIL

4. s.d =0

RELAX(u,v,l):

1. if v.d>u.d+l(u,v)for each vertex 𝑣 ∈ G.V

2. v.d=𝑢. 𝑑 + 𝑙(𝑢, 𝑣)

3. v.𝜋 = u

3. TIME COMPLEXITY

3.1 Bellman-Ford algorithm

Line 1 of algorithm: The initial for loop runs through

each vertex once. Hence this loop runs in O(V) time.

Lines 2-4: This consists of 2 loops; one executing V

times and the other E times. So, the time complexity

will be O(VE).

Lines 5-7: This loop runs through every edge,

therefore running in O(E) time.

Thus, the total time complexity is O(V.E)

2. ALGORITHMS [3]

2.1 Bellman-Ford algorithm

BELLMAN-FORD(G,l,s)

1. INITIALIZE-SINGLE-SOURCE(G,s)

2. for i= 1 to |G. V| -1

3. for each edge (u,v) ∈ G.E

4. RELAX(u,v,l)

5. for each edge(u,v) ∈ G.E

6. if v.d > u.d +l(u,v)

7. return FALSE

8. return TRUE

2.2 Dijkstra’s algorithm

DIJKSTRA(G,l,s)

1.INITIALIZE-SINGLE-SOURCE(G,s)

2. S = ∅

3. Q = G.V

4. while Q ≠ ∅

5. u=EXTRACT-MIN(Q)

6. S= S ∪ {𝑢}

7. for each vertex v ∈ 𝐺. 𝐴𝑑𝑗[𝑢]
 8. RELAX(u,v,l)

3.2 Dijkstra’s algorithm

Line 1 of algorithm: The initial for loop runs through

each vertex once. Hence this loop runs in O(V) time.

EXTRACT_MIN(Q) function runs in O(logV) time.

Line 7: This loop runs through every vertex, thus it

runs in O(E) time.

The algorithm loops through the edges of each node.

Thus, the total time complexity of this algorithm is

O(E+VlogV).

4. EXPERIMENTATION RESULTS

Comparing the running time complexity of Bellman-Ford and

Dijkstra’s algorithm by varying the number of nodes in the

graph using Erdos-Renyi model.

Number of

nodes

Time taken in seconds Probability

Bellman Ford Dijkstra’s

5 0.001235 0.02576 0.4

10 0.001335 0.027194 0.4

20 0.001617 0.028241 0.4

40 0.002634 0.027268 0.4

80 0.00493 0.029866 0.4

100 0.005823 0.032361 0.4

200 0.015194 0.039393 0.4

400 0.049738 0.069224 0.4

800 0.237473 0.441966 0.4

1000 0.576739 0.635708 0.4

1500 1.055265 0.50863 0.4

2000 1.284116 0.963116 0.4

3000 3.447053 1.957851 0.4

5000 10.80324 6.743982 0.4

7500 39.18482 14.133911 0.4

From the above graph, we can see that Dijkstra’s algorithm

works faster than Bellman-Ford approximately after 1300

nodes. Bellman-Ford is comparatively slower than Dijkstra’s

for higher number of nodes.

EXAMPLE:

The example below demonstrates the working of Dijkstra’s and
Bellman-Ford algorithm. We use the graph generated by Erdos-
Renyi model as input. This graph is given in the form of an
adjacency matrix as input to both the algorithms.

Erdos-Renyi (graph):

G=erdosRenyi(5,0.4,1)

G =

 0 10 10 0 0

 2 2 4 0 6

 6 9 8 8 9

 0 0 8 7 8

 0 3 6 6 0

This graph is now given as input to the two algorithms.

O/P of Bellman-Ford Algorithm:

 Shortest path values are from Node 1 (Origin)

 Vertex(Destination) = [Total path value, Predecessor Node]

 Vertex(1) = [0 , 0]

 Vertex(2) = [1 , 10]

 Vertex(3) = [1 , 10]

 Vertex(4) = [3 , 18]

 Vertex(5) = [2 , 16]

 Elapsed time is 0.001816 seconds.

O/P of Dijkstra’s Algorithm:

Enter source: 1

Enter destination: 5

e =

 16

Elapsed time is 0.024561 seconds.

5. TOOLS

We used MATLAB Version 7.6.0.324 R2008a to code shortest

path algorithms- Bellman-Ford and Dijkstra’s algorithm. We

generated random graphs using Erdos-Renyi model which was

coded in MATLAB as well. [4]

The code was run on a Windows 10 64-bit system @2.4GHz.

0

5

10

15

20

25

30

35

40

45

0 2000 4000 6000 8000

Ti
m

e
ta

ke
n

 in
 s

ec
o

n
d

s

Number of nodes

Bellman-Ford vs Dijkstra's

Bellman-Ford Dijkstra's

6.CONCLUSION

The analysis of the two shortest path algorithms shows

that Bellman-Ford algorithm runs with a time complexity of

O(V.E) whereas Dijkstra's algorithm runs the same problem

with a time complexity of O(E+VlogV). Thus, Dijkstra’s

algorithm has a much lower running time as compared to

Bellman-Ford; which is why we choose Dijkstra’s algorithm over

Bellman-Ford for graphs with positive edges. Bellman-Ford

algorithm should only be used with graphs having negative edge

weights.

Both the algorithms fail if there is a negative cycle

involved in the graph.

7. REFERENCES

[1] https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorit

hm

[2] https://www.youtube.com/watch?v=9PHkk0UavIM.

[3] Cormen, T.H. ;Leiserson, C.E.;Rivest R.L.;Stein C. Introduction

to Algorithms, MIT Press & McGraw-Hill.

[4] Code:

https://drive.google.com/drive/folders/0B5qF1hWVIfkQNkFSR

HRiWkFIUkU?usp=sharing

https://drive.google.com/drive/folders/0B5qF1hWVIfkQNkFSRHRiWkFIUkU?usp=sharing
https://drive.google.com/drive/folders/0B5qF1hWVIfkQNkFSRHRiWkFIUkU?usp=sharing

